BRACH: VLSI DESIGN

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1

Advanced Mathematics (MEVD-101)

Date of Assignment: 18/09/14

Date of Submission:17/10/2014

Note:1.Question should be written in plain A-4 Size Paper.

2.Minimum 300 Word Limit for each Question.

3.Assignment should be submit in stick file.

Q.1	Using method of separation of variables, solve:					Mar., 2010
		ди	Ju			
		$\overline{\partial x}$	$= 2 \frac{1}{\partial x}$	- u		
	where, $u(x, 0) = 6e^{-3x}$					
Q.2	Define binomial distribut	tion. The	e probab	ility the	pen manufactured by	aMar. ,2010
	company will be defectiv	e is $\frac{1}{10}$. I	f 12 sucl	n pens ar	e manufactured, find the	e
	probability that					
	a. Exactly two will be	defective	e			
	b. At least two will be	defectiv	ve			
	c. None will be defect	ive.				
Q.3	Find the solution of two- c	limension	nal heat e	quation.		June, 2011
Q.4	Solve the elliptic equation u_{xx}	$+ u_{yy} = 0$	0 for the fo	ollowing sc	uare mesh with boundary	Dec., 2010
	values as shown:					
		0 10	000	1000	1000	
	2000	u ₁	U ₂			
					_ 500	
	2000	u ₃	U ₄			
					- 0	
	1000		500	0		
				0	U	
Q.5	Find the Fourier transform of :		(1. 6	1		Mar., 2010
	$f(x) = \begin{cases} 1 \text{ for } x < 1 \\ 0 \text{ for } x > 1 \end{cases}$					
	Hence evaluate:					
		($\int^{\infty} \sin x$,	_		
		J	$\int_0 \frac{dx}{x} dx$	C		

IES COLLEGE OF TECHNOLOGY, BHOPAL

M.Tech Assignment-1(Unit 1 & 2)

Subject-MEVD-102 VLSI Design

Date of Assignment: 18/09/14

Date of Submission:17/10/2014

Date of Submission:17/10/2014

Note: 1.Minimum 300 Word Limit for each Question.

2.Diagram should be neat and clean.

Q.1	Describe different parasitic effect in integrated circuits? (2012)
Q.2	Explain CMOS Process. And also explain n & p channel MOSFET. (2011)
Q.3	Difference b/w Bipolar and CMOS Technologies. And define threshold voltage in CMOS.(2013) (300 words)
Q.4	Explain device modeling, DC model, Diode model, BJT model. (2011)
Q.5	What is circuit simulation? Explain Body Effect, Noise Margin.(2012)

IES COLLEGE OF TECHNOLOGY, BHOPAL

M.Tech Assignment-1(Unit 1 & 2)

Subject-MEVD-103

Advanced Logic Design Design

Date of Assignment: 18/09/14

Note: 1.Minimum 300 Word Limit for each Question.

2.Diagram should be neat and clean.

Q.1	Describe various verilog data types & operators (2012)
Q.2	Design CMOS NAND gate and discuss its working principle . (2012)
Q.3	Explain briefly about the working of programmable logic device .CMOS.(2012)
Q.4	Simplify the expiration $Y = \sum m(3,4,5,7,9,13,14,15)$ using K-map method and then implement the
	function using NAND gates.(2012)
Q.5	Write verilog module for one bit full adder using built in verilog gates.2011

IES COLLEGE OF TECHNOLOGY, BHOPAL M.Tech Assignment-1(Unit 1 & 2) Subject- MEVD-104 DSP

Date of Assignment: 18/09/14

Date of Submission:17/10/2014

Note: 1.Minimum 300 Word Limit for each Question. 2.Diagram should be neat and clean.

	2 Diagram should be near and cream
Q.1	Q1 Explain recursive and non recursive system.(2011)
Q.2	Q2 Define R.O.C and also explain its properties for the z- Transform .(2012)
Q.3	Q3 Use convolution to find X(n) if is given by $X(Z)=1/(1-1/2z^{-1})(1+1/4^{z-1})$ (2013)
Q.4	Q4 Find the two sided Z- transform of
	$x(n) = (1/3)^n n \ge 0$
	$(-2)n n \le -1 (2012)$
Q.5	Q 5 Explain Matched Z-transform. (2011)

IES COLLEGE OF TECHNOLOGY, BHOPAL

M.Tech Assignment-1(Unit 1 & 2)

Subject- MEVD 105 Embedded System Design

: Date of Assignment: 18/09/14

Date of Submission:17/10/2014

Note: 1.Minimum 300 Word Limit for each Question.

	2.Diagram should be neat and clean.
Q.1	Explain Introduction to Embedded system, And explain basic concept of Embedded System Project
	Management process.(2011)
Q.2	Explain Microcontrollers and DSP Processors? (2012)
Q.3	Explain Serial Communication Protocols, Parallel Communication Protocols.(2013)
Q.4	Explain ROM, EPROM, EEPROM, FLASH, RAM, SRAM, DRAM? (2011)
Q.5	Describe the role of embedded processor in vlsi circuits? (2012)